RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2014 Volume 17, Number 2, Pages 111–124 (Mi sjvm536)

This article is cited in 2 papers

On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants

A. K. Abdikalykovab, Kh. D. Ikramova, V. N. Chugunovc

a Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119991, Russia
b Kazakhstan Branch of Lomonosov Moscow State University, Munaitpasova st., 7, Astana, 010010, Kazakhstan
c Instiute of Numerical Mathematics, Gubkin str., 8, Moscow, 119991, Russia

Abstract: Explicit formulas for calculating eigenvalues of the Hankel circulants, Hankel skew-circulants, $(T+H)$-circulants, and $(T+H)$-skew-circulants are obtained. It is shown that if $\phi\ne\pm1$, then the set of matrices that can be represented as sums of a Toeplitz $\phi$-circulant and a Hankel $\phi$-circulant is not an algebra.

Key words: Toeplitz matrix, Hankel matrix, circulant, skew-circulant, eigenvalues.

UDC: 512

Received: 25.03.2013


 English version:
Numerical Analysis and Applications, 2014, 7:2, 91–103

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026