RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2013 Volume 16, Number 4, Pages 365–376 (Mi sjvm524)

This article is cited in 3 papers

On spline approximation with a reproducing kernel method

A. I. Rozhenkoab, T. S. Shaidorovc

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
c ARS TERM, Krasnyi pr. 220, Novosibirsk, 630000, Russia

Abstract: Spline approximation with a reproducing kernel of a semi-Hilbert space is studied. Conditions are formulated that uniquely identify the natural Hilbert space by a reproducing kernel, a trend of spline, and the approximation domain. The construction of spline with external drift is proposed. It allows one to approximate functions having areas of big gradients or first-kind breaks. The conditional positive definiteness of some known radial basis functions is proved.

Key words: spline, reproducing kernel, trend, radial basis function, external drift.

UDC: 517.972.5+519.65

Received: 13.11.2012
Revised: 22.03.2013


 English version:
Numerical Analysis and Applications, 2013, 6:4, 314–323

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026