Abstract:
This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.
Key words:nonlinear boundary optimal control problem, finite element methods, a posteriori error estimates.