RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 1999 Volume 2, Number 2, Pages 137–160 (Mi sjvm331)

This article is cited in 5 papers

Behavior of the misfit functional for a one-dimensional hyperbolic inverse problem

A. L. Karchevsky

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: In this paper we investigate the behavior of the misfit functional for a one-dimensional hyperbolic inverse problem when an unknown coefficient stands by a lowest term of a differential equation. Assuming an existence of an inverse problem solution we prove a uniqueness of a stationary point of the functional. If the minimization sequence belongs to a bounded set, we show that the following estimates of the convergence rate for the suggested method of the descent
$$ J[q_k]\le J[q_0]\exp\{-c(k-1)\},\quad\|q_k-q_*\|^2_{L_2[-T,T]}\le CJ[q_0]\exp\{-c(k-1)\} $$
takes place.

UDC: 517.956.3

Received: 06.10.1998
Revised: 30.11.1998



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026