RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2010 Volume 13, Number 1, Pages 111–121 (Mi sjvm272)

This article is cited in 6 papers

Local $\mathcal L$-splines preserving the differential operator kernel

E. V. Shevaldina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: In this paper, the local $\mathcal L$-splines of odd order with uniform nodes are constructed. These splines preserve basic functions from the kernel of the linear differential operator $\mathcal L$ with constant real coefficients and pairwise different roots of a characteristic polynomial. The pointwise error estimation of an approximation value using constructed splines on appropriate classes of differentiable functions is given.

Key words: local $\mathcal L$-splines, differential operator, the error of an approximation.

UDC: 519.65

Received: 18.12.2008
Revised: 25.03.2009


 English version:
Numerical Analysis and Applications, 2010, 3:1, 90–99

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026