RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Vychislitel'noi Matematiki // Archive

Sib. Zh. Vychisl. Mat., 2004 Volume 7, Number 2, Pages 125–134 (Mi sjvm150)

This article is cited in 1 paper

Minimal and almost minimal rank 1 lattice rules, exact on trigonometric polynomials in two variables

M. V. Noskov, N. N. Osipov

Krasnoyarsk State Technical University

Abstract: Two-dimensional rank 1 lattice rules of trigonometric degree $d$ $(d\geq 1)$ are characterized. The number of nodes of these cubature formulas is minimal or differs from minimal by one for even $d$, or by two for odd $d$.

Key words: minimal cubature formula, lattice rule of trigonometric degree $d$.

UDC: 518:517.392

Received: 03.02.2003
Revised: 17.06.2003



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026