RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2017 Volume 20, Number 3, Pages 80–91 (Mi sjim971)

Solvability of the unsteady problem of the motion of a rigid body in a flow of a viscous incompressible fluid in a pipe of arbitrary section

V. N. Starovoitovab, B. N. Starovoitovaa

a Lavrentyev Institute of Hydrodynamics SB RAS, 15 Lavrentyev av., 630090 Novosibirsk
b Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk

Abstract: We prove the existence of a generalized weak solution to an unsteady problem of a motion of a rigid body in a flow of a viscous incompressible fluid. The flow of the fluid obeys the Navier–Stokes equations and tends to a Poiseuille flow at infinity. The body moves in accordance with the laws of classical mechanics under the action of the ambient fluid and the gravity force directed along the cylinder. Collisions of the body with the boundary of the flow domain are not allowed, and hence the problem is considered until the body approaches the boundary.

Keywords: Navier–Stokes equations, solid body, cylindrical pipe, noncompact boundary.

UDC: 517.958+532.582.92

Received: 04.04.2016
Revised: 21.01.2017

DOI: 10.17377/sibjim.2017.20.309


 English version:
Journal of Applied and Industrial Mathematics, 2017, 11:3, 453–462

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026