RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2015 Volume 18, Number 3, Pages 63–75 (Mi sjim895)

This article is cited in 12 papers

Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform

A. P. Polyakovaab, I. E. Svetovab

a Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk
b Sobolev Institute of Mathematics SB RAS, 4 Koptyug av., 630090 Novosibirsk

Abstract: We propose a numerical solution of reconstruction problem of a potential vector field in a ball from the known values of the normal Radon transform. The algorithm is based on the method of truncated singular value decomposition. Numerical simulations confirm that the proposed method yields good results of reconstruction of potential vector fields.

Keywords: vector tomography, potential vector field, approximation, normal Radon transform, truncated singular value decomposition, orthogonal polynomials.

UDC: 514.8+517.983+519.6

Received: 11.03.2015

DOI: 10.17377/sibjim.2015.18.307


 English version:
Journal of Applied and Industrial Mathematics, 2015, 9:4, 547–558

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026