RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2024 Volume 27, Number 2, Pages 34–42 (Mi sjim1279)

On nonlocal oscillations in 3D models of circular gene networks

A. V. Glubokikha, V. P. Golubyatnikovb

a Novosibirsk State University, Novosibirsk, 630090 Russia
b Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Abstract: We construct three-dimensional dynamical systems with piecewise block-linear discontinuous right-hand side that simulate the simplest molecular oscillators. The phase portrait of each of these systems contains a unique equilibrium point and a cycle lying in the complement of the basin of attraction of this point. There are no other equilibrium points in these phase portraits.

Keywords: circular gene network model, phase portrait of nonlinear dynamical system, equilibrium point, invariant domain, step function, periodic trajectory, nonlocal oscillation.

UDC: 517.938

Received: 01.12.2023
Revised: 11.03.2024
Accepted: 17.04.2024

DOI: 10.33048/SIBJIM.2024.27.203


 English version:
Journal of Applied and Industrial Mathematics, 2024, 18:2, 246–252


© Steklov Math. Inst. of RAS, 2026