RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2023 Volume 26, Number 2, Pages 113–129 (Mi sjim1235)

This article is cited in 3 papers

The problem of determining the coefficient for power gradient nonlinearity in semilinear wave equation

V. G. Romanova, T.V. Buguevaba

a Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia

Abstract: An one-dimensional inverse problem of determining the coefficient for power gradient nonlinearity in a semilinear wave equation is considered. The existence and uniqueness theorems of the solution of a direct problem are proved. For the inverse problem the local existence theorem is stated and a stability estimate of the solution is found.

Keywords: semilinear wave equation, direct problem, inverse problem, power gradient nonlinearity, existence, stability, uniqueness. .

UDC: 517.956

Received: 12.12.2022
Revised: 14.12.2022
Accepted: 12.01.2023

DOI: 10.33048/SIBJIM.2023.26.210


 English version:
Journal of Applied and Industrial Mathematics, 2023, 17:2, 370–384


© Steklov Math. Inst. of RAS, 2026