RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2018 Volume 21, Number 2, Pages 108–121 (Mi sjim1004)

This article is cited in 3 papers

A lexicographic $0,5$-approximation algorithm for the multiple knapsack problem

A. B. Khutoretskiia, S. V. Bredikhinb, A. A. Zamyatina

a Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
b Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Akad. Lavrentyev av., 630090 Novosibirsk

Abstract: We present a $0{.}5$-approximation algorithm for the Multiple Knapsack Problem (MKP). The algorithm uses the ordering of knapsacks according to the nondecreasing of size and the two orderings of items: in nonincreasing utility order and in nonincreasing order of the utility/size ratio. These orderings create two lexicographic orderings on $A\times B$ (here $A$ is the set of knapsacks and $B$ is the set of indivisible items). Based on each of these lexicographic orderings, the algorithm creates a feasible solution to the MKP by looking through the pairs $(a,b)\in A\times B$ in the corresponding order and placing item $b$ into knapsack $a$ if this item is not placed yet and there is enough free space in the knapsack. The algorithm chooses the best of the two obtained solutions. This algorithm is $0{.}5$-approximate and has runtime $O(mn)$ (without sorting), where $m$ and $n$ are the sizes of $A$ and $B$ correspondingly.

Keywords: multiple knapsack problem, lexicographic ordering, approximation algorithm, approximation ratio.

UDC: 519.854.2

Received: 12.10.2017

DOI: 10.17377/sibjim.2018.21.210


 English version:
Journal of Applied and Industrial Mathematics, 2018, 12:2, 264–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026