RUS  ENG
Full version
JOURNALS // Sirius Mathematical Journal // Archive

Sirius Math. J., 2025, Volume 1, Issue 1, Pages 10–43 (Mi siriu1)

This article is cited in 1 paper

Cohomology of the Heisenberg manifold sequence

V. M. Buchstabera, F. Yu. Popelenskyb

a Steklov Mathematical Institute RAS 8, Gubkina St., Moscow 119991, Russia
b Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119899, Russia

Abstract: We describe the cohomological structure of the sequence of Heisenberg nilmanifolds $M^{2n-1}_H \rightarrow M^{2n+1}_H$, $n=1,\,2,\dots$, in terms of bigraded symplectic structures on the tori $T^{2n}$, the corresponding ${\mathfrak s \mathfrak l}_2$-representations on the cohomology of $T^{2n}$, and the Buchstaber spectral sequence (Bss).

UDC: 512.66

MSC: 17B56

Received: 25.04.2024


 English version:
Journal of Mathematical Sciences, 2024, 284:1, 17–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026