RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2014 Volume 10, 113, 28 pp. (Mi sigma978)

This article is cited in 10 papers

Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One

Maarten Van Pruijssena, Pablo Románb

a Universität Paderborn, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany
b CIEM, FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad Universitaria, Córdoba, Argentina

Abstract: We present a method to obtain infinitely many examples of pairs $(W,D)$ consisting of a matrix weight $W$ in one variable and a symmetric second-order differential operator $D$. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs $(G,K)$ of rank one and a suitable irreducible $K$-representation. The heart of the construction is the existence of a suitable base change $\Psi_{0}$. We analyze the base change and derive several properties. The most important one is that $\Psi_{0}$ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group $G$ as soon as we have an explicit expression for $\Psi_{0}$. The weight $W$ is also determined by $\Psi_{0}$. We provide an algorithm to calculate $\Psi_{0}$ explicitly. For the pair $(\mathrm{USp}(2n),\mathrm{USp}(2n-2)\times\mathrm{USp}(2))$ we have implemented the algorithm in GAP so that individual pairs $(W,D)$ can be calculated explicitly. Finally we classify the Gelfand pairs $(G,K)$ and the $K$-representations that yield pairs $(W,D)$ of size $2\times2$ and we provide explicit expressions for most of these cases.

Keywords: matrix valued classical pairs; multiplicity free branching.

MSC: 22E46; 33C47

Received: April 30, 2014; in final form December 12, 2014; Published online December 20, 2014

Language: English

DOI: 10.3842/SIGMA.2014.113



Bibliographic databases:
ArXiv: 1312.6577


© Steklov Math. Inst. of RAS, 2026