RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2014 Volume 10, 058, 9 pp. (Mi sigma923)

This article is cited in 7 papers

Schur Positivity and Kirillov–Reshetikhin Modules

Ghislain Fouriera, David Hernandezb

a School of Mathematics and Statistics, University of Glasgow, UK
b Sorbonne Paris Cité, Univ. Paris Diderot-Paris 7, Institut de Mathématiques de Jussieu - Paris Rive Gauche CNRS UMR 7586, Bât. Sophie Germain, Case 7012, 75205 Paris, France

Abstract: In this note, inspired by the proof of the Kirillov–Reshetikhin conjecture, we consider tensor products of Kirillov–Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions.

Keywords: Kirillov–Reshetikhin modules; $Q$-systems; Schur positivity.

MSC: 17B10; 17B37; 05E05

Received: April 4, 2014; in final form May 29, 2014; Published online June 4, 2014

Language: English

DOI: 10.3842/SIGMA.2014.058



Bibliographic databases:
ArXiv: 1403.4750


© Steklov Math. Inst. of RAS, 2026