RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2014 Volume 10, 029, 14 pp. (Mi sigma894)

On Projections in the Noncommutative 2-Torus Algebra

Michał Eckstein

Faculty of Mathematics and Computer Science, Jagellonian University, ul.  Łojasiewicza 6, 30-348 Kraków, Poland

Abstract: We investigate a set of functional equations defining a projection in the noncommutative 2-torus algebra $A_{\theta}$. The exact solutions of these provide various generalisations of the Powers–Rieffel projection. By identifying the corresponding $K_0(A_{\theta})$ classes we get an insight into the structure of projections in $A_{\theta}$.

Keywords: noncommutative torus; projections; noncommutative solitons.

MSC: 46L80; 19A13; 19K14; 46L87

Received: December 9, 2013; in final form March 16, 2014; Published online March 23, 2014

Language: English

DOI: 10.3842/SIGMA.2014.029



Bibliographic databases:
ArXiv: 1103.6054


© Steklov Math. Inst. of RAS, 2026