RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2013 Volume 9, 065, 18 pp. (Mi sigma848)

This article is cited in 4 papers

Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)

Nelson Faustino

Departamento de Matemática Aplicada, IMECC–Unicamp, CEP 13083–859, Campinas, SP, Brasil

Abstract: Based on the representation of a set of canonical operators on the lattice $h\mathbb{Z}^n$, which are Clifford-vector-valued, we will introduce new families of special functions of hypercomplex variable possessing $\mathfrak{su}(1,1)$ symmetries. The Fourier decomposition of the space of Clifford-vector-valued polynomials with respect to the ${\rm SO}(n)\times \mathfrak{su}(1,1)$-module gives rise to the construction of new families of polynomial sequences as eigenfunctions of a coupled system involving forward/backward discretizations $E_h^{\pm}$ of the Euler operator $E=\sum\limits_{j=1}^nx_j \partial_{x_j}$. Moreover, the interpretation of the one-parameter representation $\mathbb{E}_h(t)=\exp(tE_h^--tE_h^+)$ of the Lie group ${\rm SU}(1,1)$ as a semigroup $\left(\mathbb{E}_h(t)\right)_{t\geq 0}$ will allows us to describe the polynomial solutions of an homogeneous Cauchy problem on $[0,\infty)\times h{\mathbb Z}^n$ involving the differencial-difference operator $\partial_t+E_h^+-E_h^-$.

Keywords: Clifford algebras; finite difference operators; Lie algebras.

MSC: 22E70; 30G35; 33C80; 39A12

Received: May 6, 2013; in final form October 28, 2013; Published online November 5, 2013

Language: English

DOI: 10.3842/SIGMA.2013.065



Bibliographic databases:
ArXiv: 1304.7191


© Steklov Math. Inst. of RAS, 2026