RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2013 Volume 9, 005, 13 pp. (Mi sigma788)

This article is cited in 4 papers

Upper Bounds for Mutations of Potentials

John Alexander Cruz Moralesa, Sergey Galkinbcde

a Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-037, Japan
b Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
c Independent University of Moscow, 11 Bolshoy Vlasyevskiy per., 119002, Moscow, Russia
d Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700, Moscow Region, Russia
e Universität Wien, Fakultät für Mathematik, Garnisongasse 3/14, A-1090 Wien, Austria

Abstract: In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52].

Keywords: cluster algebras; Laurent phenomenon; mutation of potentials; mirror symmetry.

MSC: 13F60; 14J33; 53D37

Received: May 31, 2012; in final form January 16, 2013; Published online January 19, 2013

Language: English

DOI: 10.3842/SIGMA.2013.005



Bibliographic databases:
ArXiv: 1301.4541


© Steklov Math. Inst. of RAS, 2026