RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2011 Volume 7, 097, 16 pp. (Mi sigma655)

This article is cited in 11 papers

Symmetries of the Continuous and Discrete Krichever–Novikov Equation

Decio Levia, Pavel Winternitzb, Ravil I. Yamilovc

a Dipartimento di Ingegneria Elettronica, Università degli Studi Roma Tre and Sezione INFN, Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
b Centre de recherches mathématiques and Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, succ. Centre-ville, H3C 3J7, Montréal (Québec), Canada
c Ufa Institute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky Street, Ufa 450008, Russian Federation

Abstract: A symmetry classification is performed for a class of differential-difference equations depending on $9$ parameters. A $6$-parameter subclass of these equations is an integrable discretization of the Krichever–Novikov equation. The dimension $n$ of the Lie point symmetry algebra satisfies $1\le n\le 5$. The highest dimensions, namely $n=5$ and $n=4$ occur only in the integrable cases.

Keywords: symmetry classification, integrable PDEs, integrable differential-difference equations.

MSC: 35B06; 35K25; 37K10; 39A14

Received: June 16, 2011; in final form October 15, 2011; Published online October 23, 2011

Language: English

DOI: 10.3842/SIGMA.2011.097



Bibliographic databases:
ArXiv: 1110.5021


© Steklov Math. Inst. of RAS, 2026