RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2019 Volume 15, 096, 50 pp. (Mi sigma1532)

This article is cited in 3 papers

The Real Jacobi Group Revisited

Stefan Berceanu

National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, PO BOX MG-6, Bucharest-Magurele, Romania

Abstract: The real Jacobi group $G^J_1(\mathbb{R})$, defined as the semi-direct product of the group ${\rm SL}(2,\mathbb{R})$ with the Heisenberg group $H_1$, is embedded in a $4\times 4$ matrix realisation of the group ${\rm Sp}(2,\mathbb{R})$. The left-invariant one-forms on $G^J_1(\mathbb{R})$ and their dual orthogonal left-invariant vector fields are calculated in the $\mathrm{S}$-coordinates $(x,y,\theta,p,q,\kappa)$, and a left-invariant metric depending of $4$ parameters $(\alpha,\beta,\gamma,\delta)$ is obtained. An invariant metric depending of $(\alpha,\beta)$ in the variables $(x,y,\theta)$ on the Sasaki manifold ${\rm SL}(2,\mathbb{R})$ is presented. The well known Kähler balanced metric in the variables $(x,y,p,q)$ of the four-dimensional Siegel–Jacobi upper half-plane $\mathcal{X}^J_1=\frac{G^J_1(\mathbb{R})}{{\rm SO}(2) \times\mathbb{R}} \approx\mathcal{X}_1 \times\mathbb{R}^2$ depending of $(\alpha,\gamma)$ is written down as sum of the squares of four invariant one-forms, where $\mathcal{X}_1$ denotes the Siegel upper half-plane. The left-invariant metric in the variables $(x,y,p,q,\kappa)$ depending on $(\alpha,\gamma,\delta)$ of a five-dimensional manifold $\tilde{\mathcal{X}}^J_1= \frac{G^J_1(\mathbb{R})}{{\rm SO}(2)}\approx\mathcal{X}_1\times\mathbb{R}^3$ is determined.

Keywords: Jacobi group, invariant metric, Siegel–Jacobi upper half-plane, balanced metric, extended Siegel–Jacobi upper half-plane, naturally reductive manifold.

MSC: 32F45, 32Q15, 53C25, 53C22

Received: May 9, 2019; in final form November 25, 2019; Published online December 7, 2019

Language: English

DOI: 10.3842/SIGMA.2019.096



Bibliographic databases:
ArXiv: 1903.10721


© Steklov Math. Inst. of RAS, 2026