RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2019 Volume 15, 074, 17 pp. (Mi sigma1510)

This article is cited in 6 papers

Combinatorial Expressions for the Tau Functions of $q$-Painlevé V and III Equations

Yuya Matsuhira, Hajime Nagoya

School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan

Abstract: We derive series representations for the tau functions of the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations, as degenerations of the tau functions of the $q$-Painlevé VI equation in [Jimbo M., Nagoya H., Sakai H., J. Integrable Syst. 2 (2017), xyx009, 27 pages]. Our tau functions are expressed in terms of $q$-Nekrasov functions. Thus, our series representations for the tau functions have explicit combinatorial structures. We show that general solutions to the $q$-Painlevé V, $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations are written by our tau functions. We also prove that our tau functions for the $q$-Painlevé $\mathrm{III_1}$, $\mathrm{III_2}$, and $\mathrm{III_3}$ equations satisfy the three-term bilinear equations for them.

Keywords: $q$-Painlevé equations, tau functions, $q$-Nekrasov functions, bilinear equations.

MSC: 39A13, 33E17, 05A30

Received: November 24, 2018; in final form September 13, 2019; Published online September 23, 2019

Language: English

DOI: 10.3842/SIGMA.2019.074



Bibliographic databases:
ArXiv: 1811.03285


© Steklov Math. Inst. of RAS, 2026