Abstract:
Let $\mathbb{F}_{\Theta }=G/P_{\Theta }$ be a flag manifold associated to a non-compact real simple Lie group $G$ and the parabolic subgroup $P_{\Theta }$. This is a closed subgroup of $G$ determined by a subset $\Theta $ of simple restricted roots of $\mathfrak{g}=\operatorname{Lie}(G)$. This paper computes the second de Rham cohomology group of $\mathbb{F}_\Theta$. We prove that it is zero in general, with some rare exceptions. When it is non-zero, we give a basis of $H^2(\mathbb{F}_\Theta,\mathbb{R})$ through the Weil construction of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the computation of the second homology group of $\mathbb{F}_{\Theta }$ with coefficients in a ring $R$.