RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2018 Volume 14, 045, 8 pp. (Mi sigma1344)

This article is cited in 3 papers

A $\tau$-Tilting Approach to Dissections of Polygons

Vincent Pilauda, Pierre-Guy Plamondonb, Salvatore Stellac

a CNRS & LIX, École Polytechnique, Palaiseau, France
b Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, France
c University of Haifa, Israel

Abstract: We show that any accordion complex associated to a dissection of a convex polygon is isomorphic to the support $\tau$-tilting simplicial complex of an explicit finite dimensional algebra. To this end, we prove a property of some induced subcomplexes of support $\tau$-tilting simplicial complexes of finite dimensional algebras.

Keywords: dissections of polygons; accordion complexes; $\tau$-tilting theory; representations of finite dimensional algebras; $\mathbf{g}$-vectors.

MSC: 16G10; 16G20; 05E10

Received: February 26, 2018; in final form May 10, 2018; Published online May 14, 2018

Language: English

DOI: 10.3842/SIGMA.2018.045



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026