RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2006 Volume 2, 088, 17 pp. (Mi sigma116)

This article is cited in 3 papers

Solvable Nonlinear Evolution PDEs in Multidimensional Space

Francesco Calogeroa, Matteo Sommacalbc

a Dipartimento di Fisica, Università di Roma "La Sapienza", Istituto Nazionale di Fisica Nucleare, Sezione di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
b Laboratoire J.-L. Lions, Université Pierre et Marie Curie, Paris VI, 175 Rue du Chevaleret, 75013 Paris, France
c Dipartimento di Matematica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

Abstract: A class of solvable (systems of) nonlinear evolution PDEs in multidimensional space is discussed. We focus on a rotation-invariant system of PDEs of Schrödinger type and on a relativistically-invariant system of PDEs of Klein–Gordon type. Isochronous variants of these evolution PDEs are also considered.

Keywords: nonlinear evolution PDEs in multidimensions; solvable PDEs; NLS-like equations; nonlinear Klein–Gordon-like equations; isochronicity.

MSC: 35G25; 35Q40; 37M05

Received: October 31, 2006; Published online December 8, 2006

Language: English

DOI: 10.3842/SIGMA.2006.088



Bibliographic databases:
ArXiv: nlin.SI/0612019


© Steklov Math. Inst. of RAS, 2026