RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2016 Volume 12, 031, 44 pp. (Mi sigma1113)

This article is cited in 13 papers

Random Matrices with Merging Singularities and the Painlevé V Equation

Tom Claeys, Benjamin Fahs

Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium

Abstract: We study the asymptotic behavior of the partition function and the correlation kernel in random matrix ensembles of the form $\frac{1}{Z_n} \big|\det \big( M^2-tI \big)\big|^{\alpha} e^{-n\mathrm{Tr}\, V(M)}dM$, where $M$ is an $n\times n$ Hermitian matrix, $\alpha>-1/2$ and $t\in\mathbb R$, in double scaling limits where $n\to\infty$ and simultaneously $t\to 0$. If $t$ is proportional to $1/n^2$, a transition takes place which can be described in terms of a family of solutions to the Painlevé V equation. These Painlevé solutions are in general transcendental functions, but for certain values of $\alpha$, they are algebraic, which leads to explicit asymptotics of the partition function and the correlation kernel.

Keywords: random matrices; Painlevé equations; Riemann–Hilbert problems.

MSC: 60B20; 35Q15; 33E17

Received: September 8, 2015; in final form March 18, 2016; Published online March 23, 2016

Language: English

DOI: 10.3842/SIGMA.2016.031



Bibliographic databases:
ArXiv: 1508.06734


© Steklov Math. Inst. of RAS, 2026