RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2015 Volume 11, 082, 7 pp. (Mi sigma1063)

This article is cited in 8 papers

Equivariant Join and Fusion of Noncommutative Algebras

Ludwik Dąbrowskia, Tom Hadfieldb, Piotr M. Hajacc

a SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy
b G-Research, Whittington House, 19-30 Alfred Place, London WC1E 7EA, UK
c Instytut Matematyczny, Polska Akademia Nauk, ul.Śniadeckich 8, 00-656 Warszawa, Poland

Abstract: We translate the concept of the join of topological spaces to the language of $C^*$-algebras, replace the $C^*$-algebra of functions on the interval $[0,1]$ with evaluation maps at $0$ and $1$ by a unital $C^*$-algebra $C$ with appropriate two surjections, and introduce the notion of the fusion of unital $C^*$-algebras. An appropriate modification of this construction yields the fusion comodule algebra of a comodule algebra $P$ with the coacting Hopf algebra $H$. We prove that, if the comodule algebra $P$ is principal, then so is the fusion comodule algebra. When $C=C([0,1])$ and the two surjections are evaluation maps at $0$ and $1$, this result is a noncommutative-algebraic incarnation of the fact that, for a compact Hausdorff principal $G$-bundle $X$, the diagonal action of $G$ on the join $X*G$ is free.

Keywords: $C^*$-algebras; Hopf algebras; free actions.

MSC: 46L85; 58B32

Received: June 30, 2015; in final form October 3, 2015; Published online October 13, 2015

Language: English

DOI: 10.3842/SIGMA.2015.082



Bibliographic databases:
ArXiv: 1407.6020


© Steklov Math. Inst. of RAS, 2026