RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2015 Volume 11, 063, 20 pp. (Mi sigma1044)

This article is cited in 19 papers

${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors

Stanislav Pakuliakabc, Eric Ragoucyd, Nikita A. Slavnove

a Institute of Theoretical & Experimental Physics, 117259 Moscow, Russia
b Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow reg., Russia
c Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
d Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France
e Steklov Mathematical Institute, Moscow, Russia

Abstract: We consider a composite generalized quantum integrable model solvable by the nested algebraic Bethe ansatz. Using explicit formulas of the action of the monodromy matrix elements onto Bethe vectors in the ${\rm GL}(3)$-based quantum integrable models we prove a formula for the Bethe vectors of composite model. We show that this representation is a particular case of general coproduct property of the weight functions (Bethe vectors) found in the theory of the deformed Knizhnik–Zamolodchikov equation.

Keywords: Bethe ansatz; quantum affine algebras, composite models.

MSC: 17B37; 81R50

Received: February 18, 2015; in final form July 22, 2015; Published online July 31, 2015

Language: English

DOI: 10.3842/SIGMA.2015.063



Bibliographic databases:
ArXiv: 1501.07566


© Steklov Math. Inst. of RAS, 2026