RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2015 Volume 11, 054, 15 pp. (Mi sigma1035)

This article is cited in 1 paper

Eigenvalue Estimates of the ${\mathop{\rm spin}^c}$ Dirac Operator and Harmonic Forms on Kähler–Einstein Manifolds

Roger Nakada, Mihaela Pilcabc

a Notre Dame University-Louaizé, Faculty of Natural and Applied Sciences, Department of Mathematics and Statistics, P.O. Box 72, Zouk Mikael, Lebanon
b Fakultät für Mathematik, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
c Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21, Calea Grivitei Str, 010702-Bucharest, Romania

Abstract: We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler–Einstein manifold of positive scalar curvature and endowed with particular ${\mathop{\rm spin}^c}$ structures. The limiting case is characterized by the existence of Kählerian Killing ${\mathop{\rm spin}^c}$ spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing ${\mathop{\rm spin}^c}$ spinor field vanishes. This extends to the ${\mathop{\rm spin}^c}$ case the result of A. Moroianu stating that, on a compact Kähler–Einstein manifold of complex dimension $4\ell+3$ carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.

Keywords: ${\mathop{\rm spin}^c}$ Dirac operator; eigenvalue estimate; Kählerian Killing spinor; parallel form; harmonic form.

MSC: 53C27; 53C25; 53C55; 58J50; 83C60

Received: March 3, 2015; in final form July 2, 2015; Published online July 14, 2015

Language: English

DOI: 10.3842/SIGMA.2015.054



Bibliographic databases:
ArXiv: 1502.05252


© Steklov Math. Inst. of RAS, 2026