RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 277–304 (Mi semr917)

This article is cited in 1 paper

Discrete mathematics and mathematical cybernetics

Irreducible triangulations of the once-punctured torus

S. Lawrencenkoa, T. Sulankeb, M. T. Villarc, L. V. Zgonnika, M. J. Chávezc, J. R. Portilloc

a Russian State University of Tourism and Service, Institute for Tourism and Hospitality, Kronstadt Boulevard, 32A, Moscow, 125438, Russia
b Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
c Universidad de Sevilla, Sevilla, Spain

Abstract: A triangulation of a surface with fixed topological type is called irreducible if no edge can be contracted to a vertex while remaining in the category of simplicial complexes and preserving the topology of the surface. A complete list of combinatorial structures of irreducible triangulations is made by hand for the once-punctured torus, consisting of exactly 297 non-isomorphic triangulations.

Keywords: triangulation of 2-manifold, irreducible triangulation, 2-manifold with boundary, punctured torus.

UDC: 519.1

MSC: 57M15

Received March 5, 2016, published March 19, 2018

Language: English

DOI: 10.17377/semi.2018.15.026



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026