RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2018 Volume 15, Pages 246–257 (Mi semr914)

This article is cited in 1 paper

Real, complex and functional analysis

The coefficient of quasimöbiusness in Ptolemaic spaces

V. V. Aseev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: In ptolemaic spaces the class of $\eta$-quasimöbius mappings $f: X\to Y$ with control function $\eta(t)= C \max\{ t^{\alpha}, t^{1/\alpha}\}$ may be completely characterized by the inequality $ K^{-1}\leq (1 + \log P(fT))/(1+ \log P(T)) \leq K$ for all tetrads $T\subset X$ where $P(T)$ denotes the ptolemaic characteristic of a tetrad. The number $K$ has properties quite similar to those of coefficients of quasiconformality, so the concept of $K$-quasimöbius mapping may be introduced. In particular, the stability theorem is proved for $(1+\varepsilon)$-quasimöbius mappings in $\bar{R}^n$.

Keywords: ptolemaic space, Möbius mapping, quasimöbius mapping, (power) quasimöbius mapping, quasisymmetric mapping, stability theorem.

UDC: 517.54

MSC: 30C65

Received June 28, 2017, published March 16, 2018

Language: English

DOI: 10.17377/semi.2018.15.023



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026