RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2008 Volume 5, Pages 8–13 (Mi semr86)

This article is cited in 1 paper

Research papers

On the Mazurov conjecture

V. A. Antonov, S. G. Chekanov

South Ural State University

Abstract: A conjecture by V. D. Mazurov states that if, in a $2$-Frobenius group $G=P\lambda(\langle x\rangle\lambda\langle y\rangle)$ of type $(p,q,r)$, the subgroup $C_P(y)$ is of exponent $p$ then $Exp(P)=p$. In [1] this conjecture is proved for $2$-Frobenius groups of type $(3,5,2)$. In this paper a counterexample to Mazurov's conjecture is constructed.

UDC: 512.54

MSC: 20B05

Received October 23, 2007, published January 29, 2008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026