RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 252–263 (Mi semr782)

This article is cited in 13 papers

Mathematical logic, algebra and number theory

Lattices of subclasses. III

A. Basheyevaa, A. Nurakunovb, M. Schwidefskycd, A. Zamojska-Dzienioe

a The L.N. Gumilyov Eurasian National University, Satpaev str. 2, 010000 Astana, Kazakhstan
b Institute of Mathematics of the National Academy of Sciences, Chui prosp. 265a, 720071 Bishkek, Kyrgyzstan
c Sobolev Institute of Mathematics of the Siberian Branch RAS, Acad. Koptyug prosp. 4, 630090 Novosibirsk, Russia
d Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
e Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa str. 75, 00-662 Warsaw, Poland

Abstract: We prove that for certain $Q$-universal quasivarieties $\mathbf{K}$, the lattice of $\mathbf{K}$-quasivarieties contains continuum many subquasivarieties with the undecidable quasi-equational theory and for which the finite membership problem is also undecidable. Moreover, we prove that certain $Q$-universal quasivarieties have continuum many subquasivarieties with no independent quasi-equational basis.

Keywords: Abelian group, differential groupoid, finite membership problem, graph, independent basis, quasi-identity, quasi-equational theory, quasivariety, $Q$-universal, undecidable theory.

UDC: 512.56, 512.57

MSC: 06B15, 08C15

Received February 17, 2017, published March 24, 2017

Language: English

DOI: 10.17377/semi.2017.14.023



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026