RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2017 Volume 14, Pages 178–189 (Mi semr777)

This article is cited in 1 paper

Mathematical logic, algebra and number theory

Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$

M. S. Nirova

Kabardino-Balkarian State University named after H.M. Berbekov, st. Chernyshevsky, 175, 360004, Nalchik, Russia

Abstract: Distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$ is $AT4(4,6,5)$-graph. Antipodal quotient $\bar \Gamma$ is strongly regular with parameters $(800,204,28,60)$ and nonprincipal eigenvalues $4,-36$. Constituents of $\bar \Gamma$ are strongly regular with parameters $(204,28,2,4)$ and $(595,144,18,40)$, the second neighborhhood of vertex in $\Gamma$ is distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$. In this paper automorphisms of strongly regalar graphs with parameters $(204,28,2,4)$, $(595,144,18,40)$ and distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$ are investigated.

Keywords: distance-regular graph, automorphism.

UDC: 519.17

MSC: 05C25

Received January 15, 2017, published March 6, 2017

DOI: 10.17377/semi.2017.14.018



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026