RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2016 Volume 13, Pages 955–971 (Mi semr729)

Mathematical logic, algebra and number theory

On random choice of elliptic and hyperbolic rotations of the Lorentz spaces

V. A. Churkinab, A. I. Ilinbc

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, st. Pirogova, 2, 630090, Novosibirsk, Russia
c National Research University Higher School of Economics, Russian Federation

Abstract: Elliptic and hyperbolic rotations of the $(n+1)$-dimensional Lorentz space can be represented as exponential of rank $2$ matrices of the real Lie algebra $\mathfrak{so}(1, n)$. We shown that the ratio of the volumes of the corresponding sets of matrices Euclidean norm $\leqslant r$ is equal to $(\sqrt2)^{n-1}-1$ for all $r > 0$. Consequently the portion of hyperbolic rotations near identity decreases exponentially with increasing $n$. Another corollary is that in case of Minkovski space of special relativity choose of elliptic and hyperbolic rotations near identity is equiprobable.

Keywords: elliptic rotation, hyperbolic rotation, random matrix.

UDC: 512.865.3

MSC: 22E15, 22E43, 15B52

Received February 9, 2016, published November 8, 2016

DOI: 10.17377/semi.2016.13.077



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026