RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2015 Volume 12, Pages 552–561 (Mi semr608)

This article is cited in 2 papers

Mathematical logic, algebra and number theory

Admissible slides for generalized Baumslag–Solitar groups

F. A. Dudkinab

a Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Abstract: A generalized Baumslag-Solitar group ($GBS$ group) is a finitely generated group $G$ which acts on a tree with all edge and vertex stabilizers infinite cyclic. Any $GBS$ group is isomorphic to fundamental group $\pi_1(\mathbb{A})$ of some labeled graph $\mathbb{A}$. Slide is a transformation of labeled graphs. Slides play an important role in isomorphism problem for GBS groups. Given an edge $e$ with label $\lambda$ and $\alpha\in\mathbb{Q}$. In this paper we describe an algorithm that checks if there exists a cycle $p$ such that after slide $e$ over $p$ label $\lambda$ multiplies by $\alpha$ or not. If such cycle exists then the algorithm finds one of them.

Keywords: isomorphism problem, generalized Baumslag–Solitar group, labeled graph.

UDC: 512.54

MSC: 20E08, 20F10

Received May 15, 2015, published September 14, 2015

Language: English

DOI: 10.17377/semi.2015.12.045



© Steklov Math. Inst. of RAS, 2026