RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2006 Volume 3, Pages 304–311 (Mi semr206)

This article is cited in 17 papers

Research papers

On permutations generated by infinite binary words

M. A. Makarov

Novosibirsk State University

Abstract: Let $w=w(1)w(2)\ldots w(n)\ldots$ be an arbitrary non-periodic infinite word on $\{0,1\}$. For every $i\in\mathbb{N}$ we may consider the binary real number $R_w(i)=0,w(i)w(i+1)\dots$. For all $n\in\mathbb{N}$ the numbers $R_w(1),\ldots,R_w(n)$ generate some permutation $\pi_w^n$ of length $n$ such that for all $i,j\in\{1,\ldots,n\}$ the inequalities $\pi_w^n(i)<\pi_w^n(j)$ and $R_w(i)<R_w(j)$ are equivalent. A permutation is said to be { it valid} if it is generated by some word. In this paper we investigate some properties of valid permutations. In particular, we prove a precise formula for the number of valid permutations of a given length. Also we consider a problem of continuability of valid permutations to the left.

UDC: 519.1

MSC: 68R05

Received November 23, 2005, published July 25, 2006



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026