RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2005 Volume 2, Pages 62–67 (Mi semr16)

This article is cited in 1 paper

Research papers

$\aleph_0$-spaces and images of separable metric spaces

Y. Ge

Soochow University, Department of Mathematics

Abstract: A space $X$ is an $\aleph_0$-space if and only if $X$ is a sequencecovering and compact-covering image of a separable metric space. It follows that a space $X$ is a $k$-and-$\aleph_0$-space if and only if $X$ is a sequencecovering and compact-covering, quotient image of a separable metric space.

UDC: 515.126, 515.128

MSC: 54E40, 54D50, 54D65

Received March 9, 2005, published May 24, 2005

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026