RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 1288–1298 (Mi semr1289)

This article is cited in 3 papers

Real, complex and functional analysis

The Wiener–Hopf equation with probability kernel of oscillating type

M. S. Sgibnev

Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia

Abstract: We prove the existence of a solution to the inhomogeneous Wiener–Hopf equation whose kernel is a nonarithmetic probability distribution generating an oscillating random walk. Asymptotic properties of the solution are established depending on the properties of the inhomogeneous term of the equation.

Keywords: integral equation, inhomogeneous equation, Wiener-Hopf equation, asymptotic behavior, nonarithmetic distribution, oscillating type.

UDC: 517.968, 519.218.4

MSC: 45E10, 60K05

Received May 5, 2020, published September 8, 2020

Language: English

DOI: 10.33048/semi.2020.17.095



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026