RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2020 Volume 17, Pages 521–533 (Mi semr1228)

This article is cited in 2 papers

Mathematical logic, algebra and number theory

Semirings of skew Laurent polynomials

D. A. Maslyaeva, V. V. Chermnykhb

a Komi Republican Academy of State Service and Management, 11, Kommunisticheskaya str., Syktyvkar, 167982, Russia
b Piritim Sorokin Syktyvkar State University, 55, Octyabrskyi ave., Syktyvkar, 167001, Russia

Abstract: The paper considers semirings of skew polynomials and semirings of skew Laurent polynomials with rigid endomorphism. It is shown that the semiring $S$ is $\varphi$-rigid if and only if the semiring of skew Laurent polynomials $S[x^{-1},x,\varphi]$ is a semiring without nilpotent elements. The concept of the $\varphi$-arm-semiring is introduced. It is proved that if $S$ is a $\varphi$-arm-semiring, then $S$ is Baer (left Rickart) exactly when $S[x^{-1},x,\varphi]$ is a Baer (resp. left Rickart) semiring.

Keywords: skew polynomial semiring, skew Laurent polynomial semiring, rigid endomorphism, Armendariz semiring, Baer semiring, Rickart semiring.

UDC: 512.55

MSC: 16Y60

Received July 8, 2019, published April 8, 2020

DOI: 10.33048/semi.2020.17.033



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026