RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1640–1653 (Mi semr1157)

Differentical equations, dynamical systems and optimal control

Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics

L. I. Kononenko

Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russia

Abstract: A constructive algorithm is proposed for calculating the coefficients of the asymptotic expansion of a slow motions integral manifold represented in parametric form. The existence and uniqueness theorem is proven for a parametrized integral manifold of a singularly perturbed system in a degenerate case.

Keywords: asymptotic expansion, integral manifold, singularly perturbed system, slow motions.

UDC: 517.928

MSC: 34D15, 34C45

Received July 15, 2019, published November 18, 2019

DOI: 10.33048/semi.2019.16.115



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026