RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 1449–1463 (Mi semr1141)

This article is cited in 9 papers

Probability theory and mathematical statistics

The rate function and the fundamental function for multidimensional compound renewal process

A. A. Mogulskiiab, E. I. Prokopenkoba

a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia

Abstract: We consider two multidimensional compound renewal processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$. Assuming that the increments satisfy the Cramer's condition, we define and investigate the rate functions and the fundamental functions for the processes $\mathbf{Z}(t)$ and $\mathbf{Y}(t)$.

Keywords: compound multidimensional renewal process, large deviations, Cramer's condition, deviation (rate) function, fundamental function, Legendre transformation.

UDC: 519.21

MSC: 60K05, 60F10

Received June 4, 2019, published October 17, 2019

DOI: 10.33048/semi.2019.19.100



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026