RUS  ENG
Full version
JOURNALS // Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports] // Archive

Sib. Èlektron. Mat. Izv., 2019 Volume 16, Pages 975–982 (Mi semr1108)

Geometry and topology

On the set of subarcs in some non-postrcritically finite dendrites

N. V. Abrosimovabc, M. V. Chanchievad, A. V. Tetenovad

a Regional Scientific and Educational Mathematical Center, Tomsk State University, pr. Lenina, 36, 634050, Tomsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
c Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
d Gorno-Altaysk State University, Lenkina str., 1, 649000, Gorno-Altaysk, Russia

Abstract: We construct a family ${\mathbf F}$ of non-PCF dendrites $K$ in a plane, such that for any dendrite $K\in {\mathbf F}$ all its subarcs have the same Hausdorff dimension $s$, while the set of $s$-dimensional Hausdorff measures of subarcs connecting the given point and a self-similar Cantor subset in $K$ is a Cantor discontinuum.

Keywords: self-similar dendrite, ramification point, Hausdorff dimension, postcritically finite set.

UDC: 515.124, 519.172

MSC: 28A80

Received November 29, 2018, published August 3, 2019

Language: English

DOI: 10.17377/semi.2019.16.066



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026