RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2020 Volume 75, Issue 2(452), Pages 3–60 (Mi rm9922)

This article is cited in 10 papers

Solenoidal attractors of diffeomorphisms of annular sets

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a Demidov Yaroslavl State University
b Lomonosov Moscow State University

Abstract: An arbitrary diffeomorphism $\Pi$ of an annular set of the form $K=B\times \mathbb{T}$ is considered, where $B$ is a ball in a Banach space and $\mathbb{T}$ is a (finite- or infinite-dimensional) torus. A system of effective sufficient conditions is proposed which ensure that $P$ has a global attractor $A=\bigcap_{n\geqslant 0}\Pi^n(K)$ that can be represented as a generalized solenoid, that is, the inverse limit $\mathbb{T}\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots\xleftarrow{G}\mathbb{T}\xleftarrow{G}\cdots$, where $G$ is an expanding linear endomorphism of the torus $\mathbb{T}$. Furthermore, the restriction $\Pi|_{A}$ is topologically conjugate to a shift map of the solenoid.
Bibliography: 25 titles.

Keywords: annular set, diffeomorphism, attractor, generalized solenoid, shift map, hyperbolicity.

UDC: 517.926

MSC: 37D20

Received: 29.10.2019

DOI: 10.4213/rm9922


 English version:
Russian Mathematical Surveys, 2020, 75:2, 197–252

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026