RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 2014 Volume 69, Issue 6(420), Pages 3–44 (Mi rm9629)

This article is cited in 8 papers

Turbulence for the generalised Burgers equation

A. A. Boritchev

Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

Abstract: This survey reviews rigorous results obtained by A. Biryuk and the author on turbulence for the generalised space-periodic Burgers equation
$$ u_t+f'(u)u_x=\nu u_{xx}+\eta,\qquad x \in S^1=\mathbb{R}/\mathbb{Z}, $$
where $f$ is smooth and strongly convex, and the constant $0<\nu\ll 1$ corresponds to the viscosity coefficient. Both the unforced case ($\eta=0$) and the case when $\eta$ is a random force which is smooth with respect to $x$ and irregular (kick or white noise) with respect to $t$ are considered. In both cases sharp bounds of the form $C\nu^{-\delta}$, $\delta\geqslant 0$, are obtained for the Sobolev norms of $u$ averaged over time and over the ensemble, with the same value of $\delta$ for upper and lower bounds. These results yield sharp bounds for small-scale quantities characterising turbulence, confirming the physical predictions.
Bibliography: 56 titles.

Keywords: Burgers equation, stochastic partial differential equations, turbulence, intermittency, stationary measure.

UDC: 517.958:531.35

MSC: Primary 35Q53; Secondary 35B45

Received: 25.12.2013

DOI: 10.4213/rm9629


 English version:
Russian Mathematical Surveys, 2014, 69:6, 957–994

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026