RUS  ENG
Full version
JOURNALS // Uspekhi Matematicheskikh Nauk // Archive

Uspekhi Mat. Nauk, 1971 Volume 26, Issue 4(160), Pages 93–152 (Mi rm5229)

This article is cited in 27 papers

Linear problems of complex analysis

B. S. Mityagin, G. M. Henkin


Abstract: This article attempts to give a linearized form of the basic theorems of complex analysis (the Oka–Cartan theory). With this aim we study simultaneously: a) the isomorphism problem for spaces of holomorphic functions $H(M)$ and $H(D^n)$, $n=\dim_{\mathbf C}M$; b) the existence of a linear separation of singularities for the space $H(U)$, where $U=U_0\cap U_1$, and $U_k$ ($k=0, 1$) are holomorphically convex domains in a complex manifold $M$, and, in a more general setting, the splitting of the Čech complex of a coherent sheaf over a holomorphically convex domain $V$; c) the existence of a linear extension for holomorphic functions on a submanifold $M\subset\Omega$, and more generally, the splitting of a global resolution of a coherent sheaf. In several cases (for strictly pseudoconvex domains) these questions can be answered affirmatively. The proofs are based on the theory of Hilbert scales and bounds for solutions of the $\bar\partial$-problem in weighted $L^2$-spaces. Counterexamples show that the same questions may also have negative answers.

UDC: 517.5

MSC: 32A10, 32A37, 32Sxx, 46C05

Received: 22.01.1971


 English version:
Russian Mathematical Surveys, 1971, 26:4, 99–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026