RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 1999 Volume 4, Issue 4, Pages 19–38 (Mi rcd917)

This article is cited in 10 papers

Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes

R. Douadya, J.-C. Yoccozb

a C.N.R.S. et C.M.L.A., Ecole Normale Supérieure de Cachan, 61 av. du Pdt. Wilson, 94235 Cachan, France
b Collège de France, 3 rue d'Ulm, 75005 Paris, France

Abstract: Let $f$ be a $C^1$-diffeomorphism of the circle $\mathbb{T}^1 = \mathbb{R} / \mathbb{Z}$ with an irrational rotation number. We show that, for every real number $s$, there exists a probability measure $\mu_s$, unique if $f$ is $C^2$, that satisfies, for any function $\varphi \in C^0 (\mathbb{T}^1)$:
$$\int \limits_{\mathbb{T}^1} \varphi d \mu_s=\int \limits_{\mathbb{T}^1} \varphi \circ f (Df)^s d \mu_s.$$
This measure continuously depends on the pair $(s,f)$ when one considers the weak topology on measures and the $C^1$-topology on diffeomorphisms. Examples are given where uniqueness fails with $f$ of class $C^1$. These results partially extend to the case of a rational rotation number for non degenerate semi-stable diffeomorphisms of the circle. We then show that the set of diffeomorphisms that have a given irrational rotation number has a tangent hyperplane at any $C^2$-diffeomorphism, the direction of which is the kernel of $\mu{-1}$.

MSC: 58F08

Received: 04.10.1999

Language: English

DOI: 10.1070/RD1999v004n04ABEH000129



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026