RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 1999 Volume 4, Issue 1, Pages 104–116 (Mi rcd898)

This article is cited in 8 papers

Study of the double mathematical pendulum — I. Numerical investigation of homoclinic transversal intersections

A. V. Ivanov

Department of Applied Mathematics, University of St. Petersburg

Abstract: We investigate the separatrices splitting of the double mathematical pendulum. The numerical method to find periodic hyperbolic trajectories, homoclinic transversal intersections of its separatreces is discussed. This method is realized for some values of the system parameters and it is found out that homoclinic invariants corresponding to these parameters are not equal to zero.

MSC: 58F36

Received: 05.10.1998

Language: English

DOI: 10.1070/RD1999v004n01ABEH000102



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026