RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2001 Volume 6, Issue 1, Pages 53–94 (Mi rcd834)

This article is cited in 1 paper

Study of the Double Mathematical Pendulum — IV. Quantitative Bounds on Values of the System Parameters when the Homoclinic Transversal Intersections Exist

A. V. Ivanov

Physics Department, St.-Petersburg State University, Ulyanov str., 1, build, 1, Petrodvorets, St.-Petersburg, 198604, Russia

Abstract: We consider the double mathematical pendulum in the limit of small ratio of pendulum masses. Besides we assume that values of other two system parameters are close to the degenerate ones (i.e. zero or infinity). In these limit cases we prove asymptotic formulae for the homoclinic invariant of some special chosen homoclinic trajectories and obtain quantitative bounds on values of the system parameters when these formulae are valid.

MSC: 34C15, 70H08, 70K70

Received: 14.11.2000

Language: English

DOI: 10.1070/RD2001v006n01ABEH000166



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026