RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2002 Volume 7, Issue 4, Pages 425–434 (Mi rcd827)

This article is cited in 4 papers

Euler–Poincaré Formalism of KDV–Burgers and Higher Order Nonlinear Schrodinger Equations

P. Guhaab

a S.N. Bose National Centre for Basic Sciences, JD Block, Sector-3, Salt Lake, Calcutta-700098, INDIA
b Department of Mathematics, 202 Mathematical Sciences Building, University of Missouri, Columbia MO, 65211 USA

Abstract: In this paper we derive the KdV–Burgers and higher order nonlinear Schrodinger equations as an Euler–Poincaré flow on the joint space of Hill's and first order differential operators on circle. We also study a quasi-hamiltonian pair of involution equations one member of which is the KdV–Burger equation.

MSC: 35Q53, 14G32

Received: 01.05.2002

Language: English

DOI: 10.1070/RD2002v007n04ABEH000220



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026