RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2004 Volume 9, Issue 3, Pages 299–336 (Mi rcd748)

This article is cited in 1 paper

Effective computations in modern dynamics

Sharp upper bounds for splitting of separatrices near a simple resonance

M. Rudnev, V. Ten

Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK

Abstract: General theory for the splitting of separatrices near simple resonances of near-Liouville-integrable Hamiltonian systems is developed in the convex real-analytic setting. A generic estimate
$$|\mathfrak{S}_k| \leqslant O(\sqrt{\varepsilon}) \times \exp \biggl[- \biggl \vert k \cdot \biggl(c_1 \frac{\omega}{\sqrt{\varepsilon}} + c_2 \biggl) \biggl \vert -|k| \sigma \biggr], k \in \mathbb{Z}^n \backslash \{0\}$$
is proved for the Fourier coefficients of the splitting distance measure $\mathfrak{S}(\phi), \phi \in \mathbb{T}^n$, describing the intersections of Lagrangian manifolds, asymptotic to invariant $n$-tori, $\varepsilon$ being the perturbation parameter. The constants $\omega \in \mathbb{R}^n$, $c_1$,$\sigma>0$,$c_2 \in \mathbb{R}^n$ are characteristic of the given problem (the Hamiltonian and the resonance), cannot be improved and can be calculated explicitly, given an example. The theory allows for optimal parameter dependencies in the smallness condition for $\varepsilon$.

MSC: 70H08, 70H20

Received: 09.08.2004

Language: English

DOI: 10.1070/RD2004v009n03ABEH000282



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026