RUS  ENG
Full version
JOURNALS // Regular and Chaotic Dynamics // Archive

Regul. Chaotic Dyn., 2005 Volume 10, Issue 1, Pages 39–58 (Mi rcd695)

This article is cited in 10 papers

Point vortices on a rotating sphere

F. Laurent-Polz

Institut Non Linéaire de Nice, Université de Nice, 1361 route des lucioles, 06560 Valbonne, France

Abstract: We study the dynamics of $N$ point vortices on a rotating sphere. The Hamiltonian system becomes infinite dimensional due to the non-uniform background vorticity coming from the Coriolis force. We prove that a relative equilibrium formed of latitudinal rings of identical vortices for the non-rotating sphere persists to be a relative equilibrium when the sphere rotates. We study the nonlinear stability of a polygon of planar point vortices on a rotating plane in order to approximate the corresponding relative equilibrium on the rotating sphere when the ring is close to the pole. We then perform the same study for geostrophic vortices. To end, we compare our results to the observations on the southern hemisphere atmospheric circulation.

Keywords: point vortices, rotating sphere, relative equilibria, nonlinear stability, planar vortices, geostrophic vortices, Southern Hemisphere Circulation.

MSC: 70E55, 70H14, 70H33

Received: 06.08.2004
Accepted: 09.12.2004

Language: English

DOI: 10.1070/RD2005v010n01ABEH000299



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026